A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode
نویسندگان
چکیده
Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr(4+) ions from ZrO2 UL and Sn(4+) ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.
منابع مشابه
Electrodeposited Co-Pi Catalyst on α-Fe2O3 Photoanode for Water-Splitting Applications
Optoelectronic properties of hematite (α-Fe2O3) as a photoanode and the required over-potential in photo-assisted water splitting has been improved by presence of Co-Pi on its surface. In order to increase the lifetime of the photogenerated holes and lower the applied bias, cobalt-phosphate (Co-Pi) on nanostructured α-Fe2O3 by electrodeposition was de...
متن کاملHigh-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
Many narrow band-gap semiconductors cannot fulfil the energetic requirements for water splitting, thus the assistance of large external voltages to complete the water decomposition reaction is required. Through thermal decomposition of Fe(NO3)3 on n-Si nanowires prepared by the chemical etching method, we fabricated a high-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode that exhib...
متن کاملCdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation
In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe2O3/TiO2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe2O3/TiO2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broaden...
متن کاملWater Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony‐Doped SnO2 Macropore/Branched α‐Fe2O3 Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015)
In article number 1500049, Dai-Bin Kuang and co-workers demonstrate a novel macroporous antimony-doped SnO 2 as dedicated charge collector with high surface area and optical enhancement to load hematite nanorods for highly efficient water splitting. With post treatments, the composite photoanode achieves an impressive photocurrent density under sun illumination.
متن کاملSynthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation
A three-layered photoanode has been synthesized by the introduction of an additional layer of mixed WO3 and Fe2O3. A total of nine differently-packaged films were prepared by sol-gel method. The fabricated photoanodes were then successfully characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). A comparative study was also...
متن کامل